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SUMMARY 

A first-order non-conforming numerical methodology, Separation method, for fluid flow problems with 
a 3-point exponential interpolation scheme has been developed. The flow problem is decoupled into multiple 
one-dimensional subproblems and assembled to form the solutions. A fully staggered grid and a conserva- 
tional domain centred at the node of interest make the decoupling scheme first-order-acccurate. The 
discretizition of each one-dimensional subproblem is based on a 3-point interpolation function and 
a conservational domain centred at the node of interest. The proposed scheme gives a guaranteed first-order 
accuracy. It is shown that the traditional upwind (or exponentially weighted upstream) scheme is less than 
first-order-accurate. The pressure is decoupled from the velocity field using the pressure correction method 
of SIMPLE. Thomas algorithm (tri-diagonal solver) is used to solve the algebraic equations iteratively. The 
numerical advantage of the proposed scheme is tested for laminar fluid Rows in a torus and in a square- 
driven cavity. The convergence rates are compared with the traditional schemes for the square-driven cavity 
problem. Good behaviour of the proposed scheme is ascertained. 

KEY WORDS Navier-Stokes equations 3-Point exponential upwind Pressure perturbation Stability 
Curved channel Laminar flow Square-driven cavity 

INTRODUCTION 

The numerical study of fluid flow through direct formulations, i.e primitive variable approach, 
needs special attention. Great strides have been made in the past two decades. All the 
methodologies, e.g. finite element, finite difference and finite volume, gave rise to new issues to be 
studied. Some of the issues are: the inf-sup condition of the finite element method,Ip3 the 
checkerboard effect of the finite difference method," the Petrov-Galerkin or streamline-weighted 
scheme5 and the upwind differencing scheme.6 Despite that certain conditions must be satisfied, a 
practical scheme must also use at  least a partially direct algebraic equations solution strategy in 
order to obtain an accurate solution. This largely restricted the development of numerical 
schemes, especially for three-dimensional problems. In this regard, the pressure distribution 
cannot be easily solved as it appears in the momentum equations. This gave rise to the formulation 
of the pressure correction method of Patankar.4 

It is well known that a convergent numerical scheme must be both consistent and stable. The 
consistency is defined as the limit behaviour of the discrete equations used in a numerical scheme 
to approach the governing differential equation as the mesh size approaches zero. The stability of 
a numerical scheme is related to the solution behaviour of the discrete equations. When an 
iterative method is used, an unstable scheme may have difficulty in generating the solution. 
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In this study, we develop a scheme which is spurious-modes-free and stable. Attention to 
stability will be directed towards obtaining an accurate representation of the flow behaviour 
(wiggle-free) rather than the ability to obtain a solultion alone. The strategy of the scheme is 
focused on making a complex problem easy to deal with. At each step, the flow problem is 
subdivided into multi-subproblems and a best possible choice of discretization and related 
treatments is used to obtain convergence. 

The pressure field is solved with the pressure correction method due to Patankar4 to avoid the 
painstaking solution of the standard finite element approach. For higher Reynolds number flows, 
the solution of the pressure correction equation due to the SIMPLE method is still not an easy 
task,7 without a carefully chosen solution algorithm. The SIMPLE method requires a fast and 
a less demanding storage-wise algebraic equation solver. By separating the multidimensional 
dependence into multi-subproblems and introducing some extrapolation or first-order-accuracy- 
guaranteed exponential interpolation, we eliminate the stability problem associated with the 
traditional centred scheme. Owing to the strategy of the method, we call it the separation method. 

To obtain a meaningful solution, we decided to give up the conforming property. That is, the 
variable of interest and/or its fluxes may not be uniquely defined inside the computational 
domain with respect to the region of consideration. Instead, the consistency of the discretization is 
to be checked. It should be noted that a conforming scheme yields a globally consistent 
interpolation for the variables under consideration. Hence, the variable of consideration at any 
given point has only one unique interpolation equation no matter how one refers to the value at 
that point. The conforming methods pay full attention to the consistency in the interpolation of 
the variables and their fluxes. However, they introduce excessive errors when the flow Reynolds 
number is large. We work from a different perspective by focusing on the local behaviour of every 
point under consideration. A 3-point interpolation scheme is introduced in this study. TO 
accommodate the 3-point interpolation scheme, a conservational domain is used. 

The following two sections serve as a general guideline for the proposed scheme. More details 
are given in the first numerical example. 

DOMAIN DISCRETIZATION AND NODAL ARRANGEMENTS 

The primary goal here is to establish a centred conservational scheme and to use a fully staggered 
grid* to maintain both simplicity and the inf-sup condition requirement. For a relatively simple 
geometry, we discretize the domain into a relatively uniform mesh where the mesh lines are 
parallel to the co-ordinate lines, i.e. undistorted mesh. The non-equal spacing does not need 
a mapping. However, a centred conservational scheme can be obtained by simply placing the 
node of interest in the centre of the symmetrically chosen domain even though the actual nodes 
are not symmetrical with the co-ordinate axes. We make the undistorted non-uniform mesh as the 
general case for discussion in this study. 

The numbering of the nodes is based on an appropriate book-keeping scheme. A good choice 
of node numbering can be expressed as follows. The three curvilinear directions are identified, 
followed by numbering each of these directions independently and, finally, the nodes are 
identified by a 3-indexed ( iJ ,  k) tensor related to the three curvilinear directions. In this way, no 
special attention is needed to keep track of the neighbouring nodes. 

The exact conservational domain for each node on or near a boundary, however, will be 
considered in light of the specified boundary condition in order to avoid the introduction of an 
error by requiring values outside the computational domain. If a Dirichlet condition is specified, 
the nodes next to the boundary will have a conservational domain bounded by the boundary. 
This allows the values to be exactly specified at the boundary. For a Neumann boundary, a node 
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on the boundary will have a symmetrically extrapolated conservational domain. This allows the 
fluxes to be specified exactly at the boundary. The above treatment of boundaries can achieve 
consistency and avoid the non-consistent accuracy match for finite difference and for finite 
volume methods. 

To address fully the arrangement of nodes for the different primitive variables, we establish the 
following convention: when the direction of the velocity component of interest (the centre nodal 
variable) coincides with a given co-ordinate axis, we denote that direction as the parallel 
direction, while all other directions become perpendicular directions. We name the parallel 
velocity as the velocity of coincident axis, while the perpendicular velocity stands for the velocity 
that is not in the direction of the axis. This convention will be very convenient as we deal with the 
axes one at a time. 

The inf-sup condition can be represented as follows: 

where a is a positive number independent of the mesh size, u is the velocity field, V is the 
functional space of u and q is a variable taking its value from the functional space of the 
pressure, Q. 

It is known that equation (1) can be satisfied by a proper choice of (match between) I/ and Q. It 
is independent of the co-ordinate system. Equation (1) can be satisfied by arranging the velocity 
and pressure nodes in the following manner. 

As shown in Figure 1, the pressure nodes are located only in the parallel direction (in one 
element), exactly at the centre of two adjacent velocity nodes. In other words, when the continuity 
equation is treated (pressure is the variable of interest), all the velocity components are presented 
symmetrically on the nodal axis away from the centre, and only the parallel velocity is present on 
each axis. 

We will come back to address this condition later in the pressure iteration section. 

FORMAL DISCRETIZATION 

To carry out the discretization of the flow equations, the problem of interest must be initially 
written either in an orthogonal co-ordinate or in a non-orthogonal co-ordinate system prior to 
domain discretization. For a steady flow problem, the Navier-Stokes equation, in the Cartesian 
co-ordinate system for a given xi  direction, is given by 

where dij is the Kronecker delta function, x j  is the Cartesian co-ordinate, p is the pressure and ui is 
the velocity field. 

The governing equations can be rewritten in the weak form with an added weighting function. 
The weak form governing equation is 

where V, is the volume of the conservational domain and wi is a weighting function. We take wi as 

wi€(wi= 1 if x E conservational domain; wi=O for all other cases}. 
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Figure 1. Pressure nodes placement 

The multidimensionality of equation (3) is the most significant obstacle to developing a good 
numerical scheme. One-dimensional problems are easy to deal with and are better understood. 
To tackle the multidimensionality, we introduce a strategy that allows us to separate the 
multidimensional problem into multiple one-dimensional subproblems. Since the node of interest 
is at the centre of the conservational domain, we can quadratically approximate the integration 
over a dimension using the centre value when a derivative is not involved in that dimension. 
Hence, equation ( 3 )  can be decoupled further to reduce the multidimensional problem into 
multiple pseudo-one-dimensional problems. Before the decoupling is performed, the governing 
equation is regrouped in the following manner: 

The decoupling of the multidimensional problem is achieved by approximating equation (4b) by 

where I, is the length of the conservational domain the x j  direction and E i j  is the xj-component of 
the xi-momentum. Equations (4a) and (4b) are multidimensional problems. After using the 
approximation to the integration over the dimensons of xk's ( k # j )  by the centre nodal value, the 
multiple intregation of equation (4b) is approximated by a single integration as shown by 
equation (4c), which represents a one-dimensional problem. This leads us to consider one- 
dimensional discretization only and the resulting discrete equation coefficient (stiffness) matrix 
consists only of the node of interest and its two neighbours. This approximation of equation (4b) 
by (4c) is a key element of the method presented in this paper. 

For example, the weak form of the two-dimensional momentum equations is given by 

The separation of space variables for the x-momentum equation is given by 

E,,+E,,= - j j,, 3 P d x d y  
A,  dx 
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and the momentum components are defined by 

Ex,  and Ex,  are approximated, respectively, by 

where A,=AxAy, and Ax and Ay are the widths of the conservational domain in the x and 
y directions, respectively. Equations (4f) and (4g) are one-dimensional problems if Ex, and Ex,  are 
regarded as source terms. 

The quadratic interpolation function in a non-uniform one-dimensional grid can be written as 
follows: 

where hl and h2 are the two grid spacings of the node of interest. A brief illustration of 
a decoupled one-dimensional nodal arrangement is shown in Figure 2. 

The space variable x has its origin at the node of interest. The radius of the conservational 
domain is h. 

The discretization of a one-dimensional problem is simple to handle. The general conserva- 
tional domain can be described as follows: 

1. For the perpendicular direction, as shown in Figure 3, we use the intersection with the 
corresponding perpendicular mesh lines of the parallel velocity as the conservational 
domain boundary. 

2. For the parallel direction, however, the conservational domain can be arbitrary. A viable 
choice would be using at most half of the longer side length as the conservational radius, 
keeping the node of the shorter side within the conservational domain. An illustration of this 
situation is shown in Figure 2, where the variable of interest is uj and the space variable x 
is x j .  

the N O D E  Of 

i n t  e res t  
i + l  
0 x=h 

i -1 
0 

x=o 
I I 

1 +the conserva t i onal domain- I 
Figure 2. Nodal arrangement for a non-uniform one-dimensional mesh 
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Figure 3. Conservational domain set-up in a perpendicular direction 

Figure 4. Conservational domain set-up next to a Dirichlet boundary for a perpendicular direction 

3. If the node of interest is along the perpendicular direction and next to a Dirichlet boundary 
(no-slip or known entrance-exit), we can choose the side length towards the boundary as the 
radius of the conservational domain. This is shown in Figure 4. 

Equation (4c) is treated using an appropriate interpolation functions based on the three 
available nodes, such as equation (5). Special attention, however, will be given to the advection- 
dominated subproblems. Since no simple normal mode exists (although Patankar4 claimed to be 
exact) and the quadratic interpolation, equation (5), cannot be used, we employ the following 
3-point exponential interpolation type: 

4 = 4i + aieRe ‘zX + bix, (6) 

where 4 is the velocity of interest and ui is the parallel velocity of the x direction evaluated at the 
centre of the conservational domain or the node of interest, i .  

Leonardg proposed a 3-point exponential scheme and it has the following form; 

@=4i+af(eb:x- 1). (7) 
However, equation (7) is rather difficult to work with and it leads to unstable solutions when 
advection is d~mina ted .~  

The interpolation function that corresponds to equation (6) can be obtained using the three 
available nodes as 

1) 
1)  

hl (eReulx - 1) + X(e-Reu,JJ1- 1) h2(eReulx- 1) + X(e-ReuIh2 - 
Reu,hl - ( 4 i - 1  -#i)* 

(8) 
4=4c+ h l ( e R e u x h  - I )+  h 2 ( e - R e ~ E b ~  - 1)(4i+1 - 4 i ) f h l ( e R e u E h *  - I)+ h2(e- 

The interpolation equation (8) reduces to a standard upwind scheme (but not the traditional 
one) for Reui-+ k 03, with the sign taken to be the same as that of ui in the above equation. It can 
be shown that when Reu,+O, equation (8) reduces the quadratic interpolation equation (5). For 
a simple upwind scheme, we can combine the quadratic interpolation equation (5) by setting the 
off-diagonal terms to be no greater than zero in the resulting stiffness matrices. By doing so, we 
can dampen the oscillations while not altering the solution. It is worth mentioning that a tradi- 
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tional centred treatment of the right-hand side of equation (4b) for the stiffness matrix does not 
lead to absolute divergence. As a matter of fact, it can be solved quite successfully with careful 
arrangements." 

It is clear that the above strategy results in a quadratic accuracy for a small Reynolds number 
flow, i.e. (b = (b0 +ax + bx2 + 0(x3), and linear accuracy for a large Reynolds number flow, i.e. 
(b = (bo + ax + O(x2). It should be noted that for the latter case, an ordinary upwind/exponentially 
weighted implementation gives only zeroth-order accuracy, i.e. 4 = (bo + O(x), in the interpola- 
tion. 

An interesting by-product of this 3-point exponential implementation is that we are able to 
produce an accuracy equivalent to a total pressure-corrected exponentially weighted scheme of 
De Henau et al.' while treating a problem in a multidimensional situation. The complexity of the 
proposed scheme is not more than those advanced by Raithby and Torrance,12 and pa tanka^^ 

The discrete momentum equation can be obtained for an undistorted mesh as 

4 1 J K i j k  ( b i j k  + ( b M J K i j k  ( b i -  1 j k  + 4 P J K i j k 4 i +  1 j k  + ( b I M K i j k  ( b i  j -  1 k + 4 1 P K i j k ( b i j +  1 k 

+ 4 I J M i j k  ( b i j k  - 1 + # I J p i  j k d , i j k  + 1 = - c ( b i j k ( P 0  -pfi - 1) + B d i  j k ,  

where ( b i j k  stands for any velocity component at the node (i ,J,  k) ,  (bIJK, #MJK, 
$PJK, (bIMK, (bIPK, (bIJM, (bIJP, C(b and B 4  are coefficients, (i, J ,  k )  is the global index for the 
node of interest and p is the global index of the parallel direction with all the perpendicular 
directional indices fixed. For example, for the velocity component in the direction of i, i.e. d, =ui,  
the pressure term is equivalent to ( p i j k - p i - 1 j k ) .  The pressure p has been treated 
linearly in order to satisfy the inf-sup condition. The formulation as described above renders the 
coefficients to be similar to that of a 7-point difference stencil. With the present nodal arrange- 
ment, the required interpolations for the variables that are not currently under consideration can 
be made linearly. Best of all, a given interpolation involves only two points and no extrapolation 
is used. For example, the coefficient of the pressure gradient term is 

where xp is the co-ordinate location where x is of the parallel direction of the variable of interest. 
It is important to note that, for the boundary, the treatment must be consistent with the interior 

domain. The boundary condition must be specified exactly. To summarize, we list the treatment 
of the boundary as follows: 

1. Only when the gradient is known should one use a symmetrically extrapolated grid outside 
of the domain of interest. Under no other circumstances should one use a grid point outside 
the domain of interest. 

2. For a Dirichlet velocity boundary condition, all the velocity components must have a grid 
point on the boundary. However, the pressure node is not necessarily placed on the 
boundary. As a matter of fact, only the interior nodes for the pressure are present in this 
scheme for a Dirichlet velocity boundary. 

3. In the case where the velocity gradient is known on a boundary, the pressure node can be 
placed on the boundary; however, the normal velocity component should not be placed on 
the boundary. 

4. The pressure node must be present on the pressure-known boundary, where the normal 
velocity is not present. Here we should point out that the boundary condition for the normal 
velocity component should not be imposed when the pressure is known on the boundary. 
Instead, one must use a deduced boundary condition (gradient type) from the continuity 
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equation to fulfill both the boundary condition requirement of the momentum equation and 
the continuity equation. 

Finally, to solve the discretized equations, we introduce some under-relaxation F,, where 

+ F & ) 4 1 J K i  j k 4 i  jk + 4 M J K i  j k  4 i -  1 jk + 4 P J K i  j k 4 i  + 1 jk + &IMK, jk b i  j- 1 k + 4 1 P K i j k 4 i j +  1 k 

+ 4 I J M i  j k  4i j k  - t + 41 J P i j k 4 i  j k  + 1 = P + @ I J K i  j k 4 8 . k  - c 4 i  j k ( P g  -PS - 1 ) B 4 i j k .  (1 1) 

4 E . k  is the currently available value of 4 i j k .  The formed matrix structure is a 7-point difference 
module. 

Owing to the complexity of flow problems, the above treatise is merely a guideline for the 
proposed scheme. A more detailed discretization can be found in the first numerical example. 

ACCURACY AND CONVERGENCE 

The accuracy of a numerical scheme depends on the order of the interpolation scheme used and 
the consistency of the discretization. Since all terms except the derivative terms in the direction 
under consideration are evaluated at the centre node, the integration is quadratic. The consist- 
ency is then first-order for the weak form of the Navier-Stokes equation, i.e. equation (3). Hence, 
the accuracy for the advective (non-linear) term is linear. Based on past experience, a higher-order 
approximation could lead to instability ' , 1 3  (most likely to have oscillation). On the other hand, 
a lower-order approximation, although it may be stable, gives a lower overall accuracy. 

The accuracy of the current scheme is to be discussed relatively to the existing popular 
upwind/exponentially weighted schemes. Let us first examine the upwind scheme and the 
exponential scheme of Raithby and Torrance,6 which was claimed to be exact by pa tanka^-.^ For 
simplicity, we consider a one-dimensional analogy and assume an advection-dominated flow. 

The interpolation formula due to Raithby and Torrance6 is given by 

U = U i + ( a i e ~ e ~ + ~ - - i e R e ~ + ~ ~  )+ O(X), (12) 
with X ~ < X < X , + ~  and ai=f(ui, u ~ + ~ )  being a constant. 

The consistency for the advective term becomes 

duu U + U , - U - U i - l  
---a- 
dx  2h 

+ .. 
( u + h + $ h 2 )  u - 2 (u - 

- - 
4h 

- - duu - [ 2 u + (gy] h + 0 (A2),  
dx 

where h is the radius of the conservational domain, i.e. h = Ax/2, u +  = ui + 1,2 and u -  = ui- All 
the treatments above are traditional except that Taylor expansion is introduced here to examine 
the consistency. 

The advective term appears to be of a first-order consistency if one does not look at the details 
of the contents in the square bracket of equation (13). It is, however, obvious to note that if 

(14) u =  o! + px, 
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neither the interpolation, equation (12), nor the consistency, equation ( 1  3), can satisfy equation 
(14). Hence, the scheme is actually of zeroth-order convergence, or, based on the appearance, it 
may be called a pseudo-first-order-convergent scheme. However, we are aware that it is custom- 
ary to call the traditional upwind/exponentially weighted schemes as being first-order. The 
scheme is likely to experience large error in boundary layer flows having sharp gradients. 

A reduction in the numerical dispersion present in the 2-point schemes (traditional up- 
wind/exponentially weighted schemes) could be achieved by introducing the same interpolation 
scheme for both the variable of interest and the parallel velocity ui. 

The proposed scheme described here has the interpolation formulae 

with ~ ~ - ~ - x ~ l x ~ ~ x ~ + ~ - - x ~  and a, and bi being constant. 
The consistency is given by 

dud) -* ~+(3$, -d) i - i ) -u- (d) i - i  +4i) 
dx 4h 

d2 d )  - dud) u-h + O(h2).  
dx dx2 

The above consistency equation (16) not only looks like but is indeed first-order-convergent, 
where only the higher-order derivative (second order being the lowest) is contained in the leading 
truncated term. It is easy to verify that equation (14) can be exactly satisfied. The current scheme 
gives the same order of accuracy as the traditional upwind or exponential scheme would give for 
a constant coefficient linear equation. In keeping with the convention of calling the 2-point 
schemes first-order, the current scheme may be regarded as a second-order scheme. However, we 
still consider the proposed scheme first-order. 

By forcing the off-diagonal terms in the stiffness matrices (or difference molecule) not to be 
larger than zero, this scheme has guaranteed stabiiity and optimum convergence. The interpola- 
tion and consistency evaluation are accurate up to the second-order derivative of the variable of 
interest. Although a more sophisticated upwind scheme can reduce the numerical dissipation, it is 
more than likely that this would introduce the symptom of an unstable scheme, an oscillation 
alien to the exact solution beha~ i0ur . l~  A quadratic or higher-order scheme for the advective 
terms alone does not improve the accuracy drastically. A quadratic scheme will have to make use 
of at least full 27 nodes and, hence, it adds complexity. 

It should be noted that a conforming scheme for the proposed set-up can use at  most 2-point 
interpolation functions. For a multidimensional problem, the use of a 2-point interpolation 
function does not yield a conforming scheme. This is a limitation of existing finite volume and 
control volume methods. 

PRESSURE ITERATION 

The solution strategy of the pressure is that of the pressure correction m e t h ~ d . ~  By perturbing the 
pressure field, the resulting change of velocities is obtained simply by using a Gauss-Seidel 
iteration. The new perturbed velacity field is then applied to satisfy the continuity. By forcing the 
continuity equation to be satisfied, we are able to solve for the appropriate pressure perturbation. 
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This procedure can be illustrated as follows: 

-- 'dJ (Ap A 
1 dAp A$=- -- 

~ I J K  ax ~ I J K  8- P f i - 1 ) 3  

V * (U  + Au) = 0, 

V:(Ap)= - V . U ,  

where A denotes the perturbation, i.e. a numerical difference and V,' is the discrete Laplacian. 
Since the pressure is corrected (perturbed) through the enforcement of the continuity equation 

and the velocity field is solved by satisfying the momentum equations, the order of approximation 
on the velocity and the pressure must be fixed such that the scheme is stable and spurious- 
mode-free. It is well known that schemes which are at least slightly more accurate in velocity 
interpolation than in pressure interpolation can give rise to a stable appr~ximation. '~  In view of 
the type of approximation we use here, a quadratic approximation of velocity and linear pressure 
would give a stable scheme. By placing the pressure node of interest exactly in the symmetric 
position with the velocity nodes surrounding it, one can ensure that the continuity is second- 
order-accurate in velocity. In the case of a non-uniform grid, a velocity element has two 
asymmetric pressure nodes and the pressure approximation becomes linear. For the case of 
a uniform grid, even though the pressure approximation is second-order, past experience tells us 
that such a set-up does converge and the checkerboard effect is eliminated by the staggering. 

After the justification of the pressure-velocity approximation, we can now discuss the practical 
part of the scheme, which is the solution for the pressure. Owing to the behaviour of the 
Gauss-Seidel iteration, the pressure equation itself needs special attention. If storage permits, 
a direct solver is advised. To ease the storage requirement of a direct solver, we have developed 
a two-dimensional direct solver based on block matrix inversion without any pivoting. This 
two-dimensional direct solver requires a storage place less than that of a band s01ver.'~ 

Finally, we must apply some under-relaxation when perturbing the pressure. We have been 
successful in using a self-aqjusting relaxation factor in correcting the pressure. The relaxation 
factor range is different from problem to problem. In general, a more complex problem is likely to 
require a smaller relaxation factor. The relaxation factor in the pressure perturbation equation is, 
however, different from that in the velocity field evaluation. Since the initial value (before 
perturbation) of the pressure perturbation is uniformly zero, the relaxation factor is introduced in 
the following way: 

Equation (20) can also be written as 

K Ap = F ,  PRH, 

where the pressure perturbation equation is arranged in the same manner as the momentum 
equations. PIJK is a coefficient of the same type as that of 4IJK,  and the notation is the same as 
that of equation (9). 

In the formulation above, we have directly linked the SIMPLEc and SIMPLE in the pressure 
iteration. Our approach towards the pressure correction is close to that of SIMPLEc. 
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NUMERICAL PROCEDURE 

An important step for a numerical method is the execution of the solution procedure of the 
discretized equations. This is a most time/space-consuming step. We adopt an approach that 
requires minimum storage while using as much direct solution strategy as possible. The solution 
procedure is summarized as follows: 

1. Initialize the velocity and pressure fields. 
2. Discretize the domain as described in the domain discretization section. 
3. Establish the matrices for the x,-momentum equation while keeping all the other compon- 

4. Solve the discretized equations through sweeping directions with a tri-diagonal solver and 

5. Repeat 1-3 but for the x2- and x3-velocity components. 
6. Calculate the perturbation of pressure and update the pressure if the continuity is not 

7. Repeat 2-6 for a given number of inner loop iterations or until a certain criterion is met and 

8. Repeat 7 until the continuity is satisfied up to a preset tolerance at the first inner loop 

9. Interpolate for the flow field, store the results and stop. 

The inner loop (step 7) is necessary in order to separate the non-linearity from velo- 
city-pressure coupling, especially when the Reynolds number is high and the initial guess is poor. 
If storage permits, store the coefficient matrices and step 7 becomes a repetition of steps 4 6 .  

ents and coefficients unchanged as described in the formal discretization section. 

update the velocity component for the purpose of the pressure correction (step 6). 

satisfied. 

update the velocity field. 

iteration. 

NUMERICAL EXAMPLES 1 :  LAMINAR FLOW IN CURVED (TOROIDAL) PIPES 

A numerical flow problem will be solved to demonstrate the use of the proposed numerical 
scheme. In our group, the problem of laminar fluid flow in helical ducts has been solved 
previously for zero pitch, i.e. a torus.16- l 8  We shall treat this problem once again using the 
proposed numerical scheme. 

The laminar fluid flow will be that of a developing Newtonian fluid in a torus having a circular 
cross-section. The momentum equations are parabolized in the axial flow direction. A sketch of 
the co-ordinate set-up and the parameters scaling are shown in Figure 5. 

The Navier-Stokes equations are written in the generic toroidal co-ordinate system. The radius 
of the pipe, a, and the average axial velocity, U ,  are used to render the various variables 
dimensionless, that is, 

s = d / a ,  r = r'/a, u = u'/2 u. u = V'/2U, 

p = Re p'/(4p U 2 )  1 = a/R,, Re = 2aU/v, Dn=Rel ' / 2 ,  

where Re is Reynolds number, Dn is the Dean number, R ,  is the radius of the coil, ,? is the 
curvature ratio, u is the dimensionless axial velocity, L; is the dimensionless radial velocity, w is the 
dimensionless angular velocity and the primed variables are dimensional. 

The dimensionless governing equations become 

continuity equation 

1 du 1 d(rh lu)  1 a(h,w)  
h ,  as rh ,  dr  rhl a0 

+--- +-- - 0. -_ 
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Z 
4 

Figure 5. Toroidal co-ordinate set-up 

The general form of the momentum equations: 

h ,  as r dd 

For various directions, the corresponding quantities 4, d,  and S ,  take the form: 

s-momentum: 4 = u 

v sin 0+  w cos 6 I 2  
d, = -ARe+,, 

hl hl  

s,= ---+- 1 a p  211 ( sm6z+cos6F) ,  . Dv 
hl  3 s  h: as  

r-momentum: 4 = z' 

1+2h,ArsinO 
r2h: ' 

d,=- 

0-momentum: 4 = w 

where hl  is the metric coefficient, h ,  = 1 + Ar sin 8. 
Together with the boundary conditions, 

u=v=w=O 

at a certain interior point (reference). 

at  r = l  for all 8, 

p = O  
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The average u across the pipe is given by 

udA 1 
JdA 5' J =  

For a fully developed flow, the streamfunction 9 is given by 

Domain discretization 

Since the domain is regular, we use an undistorted non-uniform mesh. The three curvilinear 
directions are those of the three co-ordinate axes. Since the governing equations are parabolized, 
the problem reduces to a two-dimensional problem with an extra time-like variable in the axial 
flow direction. Hence, the nodal arrangement is the same as that of a two-dimensional problem. 
A sketch of the nodal arrangement is shown in Figure 6. Where p and u share the same grid 
points, the w grid is placed symmetrically surrounding each p grid point in the # direction, while 
u grid points are placed to symmetrically surround each p grid point in the r direction, i.e. 
O , = $ ( d , + ,  +O,) and r t = $ ( r l - l  + r I ) .  The indices I and J stand for the r- and &directional 
indices of the parallel velocity components, respectively. They are introduced to distinguish them 
from the indices i and j used for the grid staggering. 

On the boundary (pipe wall), the pressure grid point is not present. The v grid is regularly 
placed (the same rule as that of the interior nodes), w and u are placed at the boundary as well and 
there are no nodes outside of the boundary. The nodal layout is shown in Figure 7. 

At the centre of the pipe, the 0 direction is not defined. To avoid a singularity, we simply avoid 
placing any grid point at the centre. The resulting mesh near the centre looks as if a v node were 
present at the centre. A sketch of such a set-up is shown in Figure 8. When discretizing the nodes 

i-2 1-2 i-i 1-1 i I i+t I + I  i+2 
b r  

Figure 6. The mesh layout in the domain 
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Figure 7. Grid layout near the wall 

r -  d r  
g=-eo e=eo 

Figure 8. Grid arrangement near the centre 

computaional 

domain 

symmetrically 
extended region 

e 

t 
-r 

Figure 9. Mesh layout near a symmetrical pseudo-boundary 

near the centre, the variables r, u and w are assigned opposite sign when referred from across the 
centre to the other side. 

If we are to compute only half the domain, the horizontal line (0 = - n/2 and 0 = n/2) is the 
breaking line to form a pseudo-boundary, where the flow is symmetrical. On such a symmetrical 
boundary, ( u , p )  and v grids are arranged regularly and the w grid point is absent. The 
conservational domain is, however, symmetrically extended outside of the computational do- 
main. A sketch of the mesh arrangement is shown in Figure 9. This set-up allows one to impose 
the following type of weak symmetrical conditions easily: &,,,+a = 4 o b - d  and w @ b + s / 2  = - wob-a/2,  

where 4 = u, u, p .  However, the condition of symmetry for p need not be imposed in the numerical 
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E-1 r,+l rI E+2 fi+l 

Figure 10. Conservational domain for node u,, 

computation. 8, is the angle of the symmetry -~,!2. 6 is the angular incremental of grid lines 
across the symmetry line. 

The global numbering of the nodes is shown in Figure 6. A sketch of the conservational domain 
set-up for a v i j  node is shown in Figure 10. 

Formal discretization 

Since the governing equations can be written in the form of equation (3), we need only to 
identify the decoupling. To illustrate the proposed method, we take the r-momentum equation 
and discretize it at the node of v i j  in an undistorted non-uniform mesh. A sketch of the 
conservational domain is shown in Figure 7. 

The first step is to discretize in the axial direction by using a similar approach to that of 
Patankar and Spalding. l2 The final governing equation (r-momentum) after discretizing in the 
s-direction and separating r and 8 directions is given as 

where 

E,, =- 1 f" {:[ rhl ( uURe u - g ) ]  - ui-Re] a(rhluu) dr 
T E - ~ w  rw 

and 

The superscript U stands for the upstream, A ,  = (rE - rW)(ON - Os), subscripts E and W denote the 
conservational domain boundaries along the r direction for incrasing r and decreasing r, 
respectively, subscripts N and S denote the conservational domain boundaries along the peri- 
pheral direction for increasing 6 and decreasing 6, respectively, rE = )(rl + r, + l), rw = 2r, - rE, 
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ON = 8J + 1, Os = 8J and As is the axial step size. The evaluation of the right-hand side of equation 
(27a) is straightforward. Discretization of equations (27b) and (27c) is given in the Appendix. 

The discretized r-momentum equation can be assembled from the individual one-dimensional 
subproblems to yield 

P . . - P .  11 l - l j ,  (28) VIJijuij+ VMJijui- + VPJijvi+ + VIMi juij- + VTPijui j +  =VRHij- rIhl I j  ___ 
ri+ 2 -r i+ 1 

where h l r j  = 1 + Ilr, sin Oj and the coefficient matrix and the right-hand side variables are defined 
in the Appendix. 

Pressure perturbation 

When the pressure field is perturbed by Ap, it leads to changes in the velocity field. To estimate 
the velocity change, we apply Gauss-Seidel iteration on the discretized momentum equations: 

Hence, the resulting perturbed velocity field is 

vnew = u . .  + A2;. . 

w!YW = W. . + A w . .  
13 13 13’ 

[ J  1.l 13’ 

By forcing the continuity equation to be satisfied, we can solve for the pressure perturbation, i.e. 

drd0. (3 1) 

With some under-relaxation, the above equation can be rendered to the standard 5-point module 
pressure perturbation equation after substituting in the velocity perturbation: 

PIJij Apij + PMJ,j Api- 1 j + PPJij Bpi+ 1 j+  PIMij Apij- 1 + PIP;, Apij+ 1 =FpPRHlj, (32)  
where 

2 
( F I  - 1 h1 I - 1 j )  PMJ. .= - PIJjj = - PMJjj - PPJij - PIMjj - PIP,,, 13 (r, - rI ~ l)(ri - ri. l)VIJi - lj’ 

PPJ. .= - r,2h?lj 
13 ( r ,  - r ,  - l)(ri+ -ri)VTJij’ 

U r1-1h11-1jUi- 1 j h1ijWij YiU.. rrhl I j u i j  hl iJ  + 1 wij+ 1 riui j +-. 
when a good initial guess in the velocity field is used, the pressure perturbation alone is not the 

best approach to take for the pressure e~a lua t ion .~  Following the same method as that of 
SIMPLER: we can solve for the pressure directly based on the known velocity field. 

+ 2, FLOWOUTj,j= ____ +- FLOWIN,,= + ~____ 
r1-rr-1 ~ J + I - ~ J  AS r I -r I - l  8J,1-8J As 
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Although the pressure is solved by using the above strategy, STM PLER-type pressure iteration 
is not recommended. Without the pressure perturbation, the scheme would be like a plain 
iteration switching between various variables. Such an iteration scheme is usually not favourable. 
Instead, the SIMPLER strategy for the pressure evaluation is used only once to initiate the 
iteration for a few marching steps at the start or after we disturbed the velocity field substantially. 

Termination o j  iteration 

tolerance of 
correct. 

This gives rise to a stopping criterion that is related to the continuity equation. 

The iteration procedure for the momentum and pressure equations was repeated to a relative 
Hence, the momentum equations are satisfied as long as the pressure field is 

In order to have a correct pressure field, the velocity field must satisfy the continuity equation. 

The relative error in the continuity equation is given by 

- 21 PRH, I 
’1 3 

RSD & IF LOW IN^^'^ + IF LOW OUT,,^, 

11 
i , j  

where PRH,, is the error in the flow in and out of the conservational domain of pii and 
FLOWIN,, is the flow into the conservational domain. In this example, we set the stopping 
criterion to be RSD < 

On close look at the definition of RSD, one can observe that RSD can be considered as an 
estimate of the L ,  norm of the normalized continuity equation error distribution. 

Computational results 

Table I shows the grid dependence and computational time required for the fluid flow 
development from a flat flow profile to the primary two-vortex solution with a NeXT station for 
1200 axial steps. 

The grid notation used is given as aM x Nbc, where a = n stands for the non-uniform mesh in 
the radial direction, u = u stands for the uniform mesh in the radial direction, M is the number of 
grid points in the radial direction. N is the number of grid points in the peripheral direction, h =f  
stands for the full domain formulation (no symmetry is assumed), b = h stands for a half domain 
formulation (the symmetry is imposed), c = n  stands for the non-uniform mesh in the peripheral 
direction and c = u  stands for the uniform mesh in the peripheral direction. A typical mesh 
n16 x 14hn is shown in Figure 11. 

In Figure 1 1, the mesh lines parallel to the peripheral direction are the perpendicular mesh lines 
of variable u, and the lines parallel to the radial direction are the perpendicular mesh lines of 
variable w. The cells formed by the mesh lines are the conservational domains for the variables of 

Table I. Grid test for Re= 1723, i= 1/30 

Grid u10 x 20fu n10 x 20fu n15 x 24fu n20 x 28fu n25 x 32fu n30 x 40fu n40 x 48fu 

fRe 3 8.30 3742 35.82 36.38 36.10 36.24 36.19 
cpu, s 3161.4 2954.9 6506.9 9646.8 19282.1 43150 123530* 

Note that the literature value found in fRe=37.15 by Tarbell and S a r n ~ e l s . ~ ~  
* 2000 axial steps are used for this case. 
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Computational domain 

symmetrically extented 

Figure 11. Mesh layout for 1116 x 14hn 

Table 11. Grid test for Re=1928.5, 1=0.01, i.e. Dn= 192.85 

Grid n10 x 12hu n10 x 12hn n16 x 14hn n20 x 16hn n20 x 20hn n30 x 25hn n30 x hn 

fRe 30.64 29.10 29.35 29.50 29.40 29.36 29.36 
cpu, s 4563.7 6472.1 10936.3 17049-2 20946.8 49123.2 61480.0 

Literature 
Dennis and NgZ1 
Yang and KellerZz 

Grid fRe Dn i, 
60 x 30 29.33 192.9 0.0 
60 x 20 29.34 192.8 0.0 

u and p. The centre of the pipe has no grid points. 6 = - 4 2  and 0 = 4 2  lines are the computa- 
tional domain boundaries and not the perpendicular mesh lines for w. 

We chose 1=0.01 to generate some solutions in order to compare with the literature where 
loose-coiling approximation was employed. 

Table IT shows the grid dependence and the computational time required for a fully developed 
flow. The literature data for a loose coiling are also included in Table IT. 

From Tables I and 11, one can observe that the proposed scheme converges fairly well. The grid 
of n16 x 14hn is adequate for the 4-vortex solution of Dn= 192.85, whereas, in the literature, 
a very large number of grid points were required. The solution from a grid of n10 x 12hn is also 
within 1% of that obtained using a fine grid. 

The solutions were found not to be grid-sensitive once the grid size is sufficiently small, as is 
shown in both Tables I and 11. 

Figure 12 shows the secondary flow pattern of the 4-vortex solution used in Table 11. The 
numbers denote the $ values of the secondary flow stream function as defined by equation (26). 

NUMERICAL EXAMPLE 2: SQUARE-DRIVEN CAVITY FLOW 

In the first example, we have shown the implementation of the proposed method. To show more 
clearly the convergence rate and the advantage of the 3-point exponential scheme over 2-point 
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-0.0 

0.5 

1.0 - 
Figure 12. Four-vortex secondary flow pattern for Dn= 192.85 and 1=0.01 for half of the Bow domain 

(0s)) u = 0, v = 0 (1 

Figure 13. Square-driven cavity 

schemes and non-exponential schemes, we choose the problem of a square-driven cavity flow. The 
system set-up and the boundary conditions are shown in Figure 13. The velocity components are 
normalized by the velocity b‘, of the moving plate (located at the topmost, i.e. y = l), i.e. u = u‘/U, 
and v = v’ /Uo.  The geometrical variables are normalized by the side length of the square, L, i.e. 
x=x’/L and y=y‘/L. 

The governing equations are 

au av 
ax ay -+-=0, 
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,3-point exponential 

0 50 100 150 200 250 300 

No. of Iterations 

Figure 14. The convergence rate with the proposed method 

Table 111. The cpu time requirement for various schemes and meshes 

Re Scheme Mesh ITER RSD cpu, s 

lo00 2-p upwind 40 x 40 278 1.0 x 10-5 5 193.9 
lo00 2-p exponential 40 x 40 300 4.4x 10-5 7238.7 
1000 3-p upwind 40 x 40 266 9 . 1 ~ 1 0 - '  6418.8 
lo00 3-p exponential 40 x 40 284 9.6 x 6528.8 
lo00 3-p exponential 20 x 20 69 9.7 x 10-6 5506 
1000 3-p exponential 80 x 80 765 7 . 9 ~  111784.8 

ITER stands for the number of iterations performed. 

Although a good approach to this problem would be to use a non-uniform mesh, a unform 
mesh was used. The initial guess of zero is used for all variables in all cases. 

Figure 14 shows the convergence rate of using different interpolation functions. It can be seen 
that the 3-point interpolation schemes do not differ much from the 2-point schemes in terms of 
convergence rate. However, the 2-point exponential scheme did not reduce RSD beyond 
and, consequently, showed difficulty at very low RSD. 

Table I11 shows the cpu time requirement of the various schemes by a NeXT machine. The use 
of exponential functions does not increase the cpu time dramatically. A small increase of less than 
2% is observed for the case of the 3-point exponential over the 3-point upwind scheme. 

Figure 15 shows the velocity profiles using uniform grids of 80 x 80 and 140 x 140 with 
a 3-point exponential interpolation function. Results from Schreiber and Keller l9 are also 
included for comparison. The agreement is fairly good between the present solution and that 
presented by Schreiber and Keller. 
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-. - . -. . current work, 80x80 
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2.0 

8 1.6 
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0.8 

0.4 

current work, 140x140 

Schreiber & KellerlP 

0.0 0.2 0.4 0.6 0.8 1.0 

Y 
Figure 15. Comparison of u-velocity profiles for Re-1000. Data from Schreiber and Keller” are extrapolated results 

hased on a few mesh sizes including a mesh of 141 x 141 and using a stream function formulation 

CONCLUSIONS 

A first-order non-conforming numerical scheme for fluid flow with a 3-point exponential inter- 
polation has been developed. The multidimensional problem is first decoupled into multiple 
one-dimensional subproblems upon discretizing. After assembling the multiple one-dimensional 
subproblems to form the algebraic equations for the multidimensional flow problem, the resulting 
algebraic equations are solved iteratively using a tri-diagonal solver. The velocity and pressure 
are decoupled at each iteration using the pressure correction method due to pa tanka^^ 

The accuracy of the traditional upwind/exponentially weighted schemes has been investigated 
and is compared with the proposed 3-point scheme for both interpolation and consistency. It is 
found that the proposed 3-point exponential interpolation scheme together with the multidimen- 
sional separating strategy render a guaranteed first-order convergence. 

The computational results for laminar fluid flows in a torus and in a square-driven cavity show 
good agreement with the literature. The convergence rate is similar to the traditional upwind 
schemes. The use of exponential functions does not affect the computational time. 
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APPENDIX 

Discretization of the separated r-directional r-momentum component can be illustrated as 
follows: 

(IE -rw)EUr =[ rh, ( vURe -[ rhl ( vURe v - 3 1  -Vij(rEhlEVE-rWhlWvW)Re, 
r = r w  

where 
U u 

v i +  1 j(rE-rI) + uij(rI+ 1 -rE) 
vE=v' l r=rs= 

rI+l--rI 
U U 

U ui j(rr - r d  + vi - I j(rW - rl- 1)  v w = v  
rr - rr - 1 

The subscripts E and W are defined in the paper following equation (27). 
The momentum fluxes at the conservational surface can further be written as follows: 

[ rh, ( v' Re u - g ) ]  = EEui- 1 j + (rEh1EUE Re-dE-bE) v i j  + PEVi + 1 j r  
r = r E  

[rhl ( v u  Re v -$)I = aWui- + (rwhlwuw Re- aw - PW)vij  + PWvi+ j. 
r = r w  

Hence, the discretized one-dimensional module can be written as 

rW)Evr =(rEhlEaE - rWhlWaW)(Ui ~ 1 j - O i j )  + rE h l E P E  - r W h l W P W )  (vi + 1 j- vi j), (34) 
where a and P are obtained by using the interpolation equation (8). In this case, H1 = rI - rl- ,, 
H2 = rl + - rl and Re ui = v: Re. Here the use of upper-case H is to avoid any confusion with the 
metric coefficients. To simplify the notations, we use 

a = zi" Re, b = Re ui, H=PE -rI = r1 - rw. 

Application of the 3-point exponential interpolation equation (8) leads to 

H ,  (ebH- 1) + H(e-bH1- 1) 
Hl(ebH2-- 1)+H2(e-bH1- 1) aE(ui + 1 j - Oi j) [ rhl (av -$)I = aEvij+ 

r = r >  

H2(e-bH- l)+H(ebH2- 1) 
Hl(eb"z-1)+H2(e-bH1-1) 

+ aE(vi+ 1 j -  vij)  

Hence, one can obtain 

( U E +  b)H2(CbH - 1) f bH2 -(a,H- I)(ebH' - 1 )  
E E  = 

Hl(ebH2-1)+H2(e-bH'- 1) 

(aE-b)Hl(ebH- l)-bH1 +(aEH-  l)(e-bH'- 1) 
H,(ebHZ- 1)+ H2(e-bH1- 1) P E  = 
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similarly, 

(aw+b)HZ(epbH- 1)+bH2-(uwH- l)(ebH2- 1) 
H1(ebH2-1)+~2(e-bHl-  1) 

aw = , 

(aw+b)Hl(ebH- l ) - b ~ ,  +(uwH- l)(e-bHl-l) 
Hl(ebH2-1)+H2(e-bHl- 1) BW = 

In the above expressions for a and ,8 we have taken care of the large Reynolds number 
flow limit. When b+O, i.e. almost creeping flow, computationally, equation (35) is of 0/0 type. 
In order to avoid this numeric difficulty in the computation, we take the limit of b+O in 
equation (35) to obtain the following expressions for small Reynolds number flows: 

Equation (36) can also be obtained by applying the quadratic interpolation function, 
equation (9), instead of the exponential interpolation function, equation (8). In practice, we can 
use equation (36) when the cell Peclet number b H 1  and bHz  < 2. 

One can discretize the other direction in the same manner. The final discretized r-momentum is 
shown by equation (29), where the coefficients are defined as follows: 

T E h  1 EBE - rwh1 W B W  VPJij = 5 

rE-rW 

1 +2hIIjArIsinBj wN + W S  VIJij= -VMJij-VPJij- VIMij- VIP,, Wc = rrhltj 2 ’  

wij+ 1(rI -T i+  1 )  + wi- 1 j +  1 (ri+2 -TI) W, = 1 

Ti+  2 -T i+  I 

uij(rt- ri+ 1 )  + ui- 1 j(ri+ 2 - rI )  
Uc = 2 

ri + z -ri + 1 

and VIPij and VIMij are similar to VMJij and VPJij. 
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